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On the Sensitivity of the MIMO
Tomlinson–Harashima Precoder

With Respect to Channel Uncertainties
Despoina Tsipouridou and Athanasios P. Liavas, Member, IEEE

Abstract—The multiple-input multiple-output Tomlinson–Ha-
rashima (MIMO-TH) precoder is a well-known structure that
mitigates interstream interference in flat fading MIMO systems.
The MIMO-TH filters are designed by assuming perfect channel
state information (CSI) at both the transmitter and the receiver.
However, in practice, channel estimates are available instead of
the true channels. In this work, we assess the MIMO-TH per-
formance degradation in the cases where the channel estimates
are used as if they were the true channels. More specifically, we
develop second-order and high-SNR approximations to the excess
mean-square error (EMSE) induced by channel uncertainties, un-
covering the factors that determine the MIMO-TH performance
degradation in practice. Numerical experiments are in agreement
with our theoretical developments.

Index Terms—Channel estimation errors, channel time varia-
tions, MIMO systems, Tomlinson–Harashima precoding.

I. INTRODUCTION

I NTERSTREAM interference is a problem commonly
encountered in multiple-input multiple-output (MIMO)

communication systems. Many receiver structures mitigating
interstream interference have been proposed in the literature,
achieving various levels of performance with varying com-
plexity. Prominent among them is the MIMO decision feedback
equalizer (DFE). This nonlinear receiver works efficiently but
may suffer from error propagation. This disadvantage can be
overcome by moving the feedback loop of the DFE to the trans-
mitter, resulting in the so-called Tomlinson–Harashima (TH)
precoder. In this work, we consider the TH precoder proposed
in Appendix E of [1]. The design of the TH precoder assumes
perfect channel state information (CSI) at both the transmitter
and the receiver; see, for example, [1]–[5]. However, since CSI
uncertainties always exist in real-world systems, due to, e.g.,
channel estimation errors, this assumption is not realistic. One
way to proceed is to use the channel estimate as if it were the
true channel; this is sometimes called the mismatched or naive
approach. Another way is to exploit the statistical description
of the channel uncertainties and develop robust designs; see,
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for example, [6]–[8]. However, in all cases, the design of the
MIMO-TH filters is based on inexact channel estimates and
thus performance degradation is inevitable.

In this work, we consider a packet-based communication
scenario where the channel may change (slowly) between suc-
cessive packets. During each packet, the receiver estimates
the channel and feeds its estimate back to the transmitter. This
estimate is used for the design of the TH precoding filter that
will be applied to the next packet. Thus, the TH precoding filter
suffers from channel estimation errors (that occur at the receiver)
and usually also suffers from mismatch due to channel time-vari-
ations, because the next packet may pass through a (slightly)
different channel. Upon arrival of the packet, the receiver esti-
mates the current channel (which is fed back to the transmitter)
and proceeds to equalization and detection. Thus, the processing
of each packet suffers from errors at both the transmitter and the
receiver. Obviously, these errors degrade the MIMO-TH perfor-
mance. We quantify this degradation by assessing the associated
excess mean-square error (EMSE). We show that the EMSE
consists of two components that can be studied separately. The
first component is due to the mismatch between the previous
channel estimate and the current channel, while the second is due
to the mismatch between the current channel and its estimate.
We develop a second-order approximation to the EMSE which,
in our experiments, is very accurate for SNR higher than 5 dB.
However, this approximation is quite complicated and thus diffi-
cult to interpret. We focus on the high-SNR regime and derive a
simple, informative, and tight (for sufficiently high SNR) EMSE
upper bound, which uncovers the basic factors that determine
the MIMO-TH performance degradation.

A. Notation and Matrix Results

Superscripts , , and denote transpose, conjugate trans-
pose and elementwise conjugation, respectively. , ,
and denote the trace, the vectorization and the half-
vectorization operator, respectively. denotes the Kronecker
product and denotes the real part of a complex number.

and denote the identity and zero matrix, re-
spectively. Finally, denotes the th element of matrix .

We remind that for matrices with compatible dimensions [9,
pp. 17-19]

(1)

(2)

(3)

(4)
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Fig. 1. System model.

and [9, p. 117]

(5)

where denotes the commutation matrix. If and are pos-
itive semidefinite, then [9, p. 44]

(6)

For any matrix [9, p. 97]

(7)

If is lower triangular, then [9, p. 99]

(8)

and

(9)

where is the elimination matrix [9, ch. 9] and
is the diagonal matrix whose elements are the diagonal elements
of . Finally, we remind that [14, p. 130]

(10)

During our study, we shall develop first- and second-order
approximations, with respect to channel uncertainties, as well as
high-SNR approximations. In order to distinguish among these
cases, we shall use the symbols , , and , respectively.

The rest of the paper is structured as follows. In Section II, we
present the MIMO-TH structure assuming that the receiver and
the transmitter have perfect CSI, we describe the channel uncer-
tainties, compute the filters that result from the naive approach
and define the EMSE. In Section III, we develop a second-order
approximation to the EMSE, while in Section IV we derive a
simple high-SNR EMSE upper bound. In Section V, we sup-
port our theoretical developments with numerical experiments.
Some conclusions appear in Section VI.

II. THE MIMO-TH PRECODER

A. The System Model

We consider the baseband-equivalent discrete-time fre-
quency-flat MIMO system depicted in Fig. 1, with transmit
and receive antennas (with ). The input–output
relation of the channel is

(11)

where is the channel input vector, is the
channel matrix, and is the additive channel noise. The
channel input symbols , , are successively gen-
erated from the data symbols , , as shown in
Fig. 1, where the feedback loop consists of the feedback ma-
trix and the modulo operator . If is a vector with
independent identically distributed (i.i.d.) elements (drawn
from an -QAM constellation), then it can be shown that
consists of uncorrelated random variables, uniformly distributed
in and has covariance matrix , where

[1, p. 462]. The noise vector is assumed to
be complex-valued circular Gaussian with covariance matrix

.

B. Optimal MMSE MIMO-TH

In this subsection, we briefly present the computation of the
MMSE MIMO-TH filters, following the approach of the Ap-
pendix E of [1]. The error signal before the receiver’s modulo
operator (see Fig. 1) is

(12)

and the mean-squared error is defined as

(13)

The function can be expressed as

(14)

For any , minimization of with respect to ,
yields

where . By substituting this value to ,
we obtain

(15)

Minimization of with respect to , subject to the con-
straint that be a lower triangular matrix with diagonal ele-
ments equal to 1, gives [1], [10]

(16)
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where is the lower triangular matrix satisfying the modified
Cholesky factorization

(17)

and

(18)

Using , we compute the optimal as

(19)

Substituting and in (14), we obtain

(20)

Using (16), we derive the alternative expression for the MMSE

(21)

C. Channel Uncertainties

After the description of the ideal case, where we assumed
that the channel is perfectly known at the receiver and the
transmitter, we proceed to a realistic scenario where both the
transmitter and the receiver possess channel estimates. More
specifically, we consider a frequency division duplex system and
focus on the transmission of packet . During the transmission of
packet , the receiver estimates the true channel, , as

. This estimate is communicated to the transmitter through
a feedback channel and is used for precoding packet . The true
channel during the transmission of packet , , is estimated at
the receiver as . Thus, in general, the channel estimate used
at the transmitter for precoding packet , , suffers from
both estimation errors and errors due to channel time-variations
(other potential error sources are quantization errors and feed-
back channel errors—the following analysis can easily incorpo-
rate quantization errors, while the same does not happen for the
feedback channel errors). On the other hand, the channel esti-
mate at the receiver for packet , , suffers only from estima-
tion errors.

In order to assess the associated performance degradation, we
adopt the following statistical models for the channel inaccura-
cies.

1) Channel estimation errors: During each packet, we use
training and estimate the channel using the maximum-
likelihood (ML) method, i.e., we assume that the channel
is constant but unknown. The training block for
packet , , is multiplexed with the precoded information
vectors (for example, it may be at the start of the packet)
but is not precoded (we note that may be the same for
all ). If denotes the channel output corresponding to

, then the ML estimate of is [11, p. 174]

(22)

The channel estimation error is defined as

(23)

Optimal channel estimates are obtained for semi-unitary
training matrices, i.e., , and the optimal
channel estimation error covariance matrix is [11, p. 175]

(24)

We note that channel estimation errors associated with dif-
ferent packets are independent due to the assumed noise
independence.

2) Channel time-variations: We adopt a commonly used sta-
tistical model describing the time evolution of the channel
(the model is used only for analysis purposes and is not
exploited during channel estimation). We denote with
the time difference between two successive packets. We
assume that is a stationary matrix random process
where, for all , the elements of are unit variance i.i.d.
circular Gaussian random variables, i.e.,

We assume that the channel coefficients are time-varying
according to Jakes’ model, with common maximum
Doppler frequency . Thus, and can be mod-
eled as jointly Gaussian with cross-correlation [12, p. 93]

(25)

where is the normalized correlation coefficient specified
by the Jakes’ model, i.e., , with the
zeroth-order Bessel function of the first kind. If we define
the channel error due to time-variations as

(26)

then the associated error covariance matrix is independent
of and is given by

(27)

Finally, we note that it is natural to assume that the errors due
to channel time-variations are independent of the channel es-
timation errors because they are originating from independent
phenomena, i.e., the first from the random channel evolution in
time and the second from the additive channel noise.

In the sequel, for notational convenience, we neglect index .
We denote with the true channel, with the channel esti-
mate at the transmitter, and with the channel estimate at the
receiver. We define the mismatch at the transmitter and the re-
ceiver as

(28)
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It can be easily shown that and are zero mean
with covariance matrices

(29)

and

(30)

respectively. Furthermore, and are independent.
We close this subsection by mentioning that is

also required for the computation of the filters at both the trans-
mitter and the receiver. We assume that is known
at both sides and is estimated at the receiver (for more details
we refer to [11, Sec. 9.4]); then, the estimate is sent to the trans-
mitter through a feedback channel. It turns out that the variance
of the noise variance estimation error is and thus, for suf-
ficiently high SNR, the error in is negligible compared with
the channel estimation error. Thus, we assume that is perfectly
known.

D. MIMO-TH: The Mismatched Approach

In this subsection, we follow the mismatched approach and
compute the MIMO-TH filters using the channel estimates
and as if they were the true channel . The transmitter, based
on (16), computes and uses

(31)

where and .
We note that since the receiver knows , it can compute and
use .

Given that the transmitter uses , the input estimation error
becomes

(32)

where is the channel input produced by the feedback filter
and . In order to compute the “optimal” filter at
the receiver, we follow steps analogous to those of Section II-B.
Then, it can be shown that the filter that minimizes is

(33)

The best the receiver can do is to use its current channel estimate
as if it were and compute1

(34)

Using (31) and (34) in (14), we obtain that the MSE achieved
by the mismatched approach is

(35)

1It can be proven that if the receiver uses �� instead of ��, then the perfor-
mance degrades dramatically. The proof can be made available by the authors
upon request.

The EMSE is defined as

(36)

where the expectation is with respect to the channel uncertain-

ties. Our main task in the sequel is to quantify .

III. EMSE—SECOND-ORDER ANALYSIS

In this section, we develop a second-order approximation to

, with respect to channel uncertainties.
We start by considering two unrealistic and, thus, seemingly,

useless cases. Their usefulness will become evident shortly.
1) Channel uncertainties only at the transmitter: We assume

that the transmitter possesses the channel estimate while
the receiver has perfect CSI. Thus, the transmitter and the
receiver use filters and , defined in (31) and (33), re-
spectively. Substituting these values into (14), we obtain
that the associated MSE is

(37)

The corresponding EMSE is defined as

(38)

2) Channel uncertainties only at the receiver: We assume that
the transmitter has perfect CSI and the receiver possesses
the channel estimate . Thus, the transmitter uses de-
fined in (16), while the receive filter, denoted as , is com-
puted using the optimal transmit filter and the channel
estimate , as

(39)

Substituting (16) and (39) into (14), we obtain that the as-
sociated MSE is

(40)

The corresponding EMSE is defined as

(41)

The next result shows that can be decomposed
into two terms that correspond to these unrealistic cases.

Proposition 1: The EMSE induced by channel inaccuracies
at both the transmitter and the receiver can be approximated as

(42)
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Proof: The proof is provided in Appendix I and is based on
the fact that the channel errors and are zero-mean
and independent.

In the sequel, we develop second-order approximations to
and .

A. Channel Uncertainties Only at the Transmitter

Using a Taylor expansion of the function in (37)
around , we obtain

(43)

where and is the second derivative
of evaluated at .2 It can be shown that [13]

(44)

Using (38), (43), and (44), we obtain

(45)

where

(46)

The following lemma gives a second-order approximation to
.

Lemma 1: A second-order approximation to is
given by

(47)

where terms are defined in (48)–(50)

(48)

(49)

(50)

In these expressions, is the elimination matrix and
, where is the commutation matrix. The scalar

is defined as (see (27)).
Proof: The proof is provided in Appendix II.

2The first derivative of������ at� vanishes because� is the minimizer
of ������.

B. Channel Uncertainties Only at the Receiver

Using a Taylor expansion of the function in (40)
around , we obtain

(51)

where , and is the second derivative
of evaluated at .3 It can be shown that [13]

(52)

Using (41), (40), and (52), we obtain

(53)

where

(54)

The following lemma gives a second-order approximation to
.

Lemma 2: A second-order approximation to the
is given by

(55)

where

(56)

and

(57)

Proof: The proof is provided in Appendix III.
Substituting (47) and (55) into (42), we obtain a second-order

approximation to the EMSE induced by channel uncertainties at
both the transmitter and the receiver. Admittedly, this approx-
imation is complicated and difficult to interpret. In the sequel,
we shall develop simple and insightful high-SNR expressions.

IV. EMSE—HIGH-SNR APPROXIMATIONS

In this section, we focus on the high-SNR regime and we
derive a simple upper bound to and a simple ap-
proximation to . Putting these expressions together,
we obtain a simple high-SNR EMSE upper bound for the
mismatched MIMO-TH precoder. Finally, we average over the
channel statistics and obtain a simple high-SNR upper bound
for the expected value of the EMSE to MMSE ratio.

High-SNR regime means “small” . Our results will be de-
rived either by ignoring terms compared with terms
or by ignoring terms compared with terms. We

3The first derivative of ��� ��� at� is zero because� minimizes the
function ��� ���.
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proceed by presenting some high-SNR approximations that will
be useful in the sequel.

Using the definition of matrix in (17), it can be shown that
for high SNR

(58)

and

(59)

Furthermore (the proof is provided in Appendix V)

(60)

Using the matrix inversion lemma [16], it can be shown that

(61)

Then, using (54), (61), and the high-SNR assumption, we get

(62)

Finally, using (19) and (61), we can write matrix as

(63)

and for high SNR

(64)

A. High SNR—Channel Uncertainties Only at the Transmitter

Lemma 3: In the high-SNR regime, the following approxi-
mate inequality holds

(65)

Proof: Using (58) in (48) and ignoring the term that in-
volves , we obtain

(66)

where at point we used the structure of the elimination and
the commutation matrices and the fact that matrices and

have positive diagonal elements.

Using (58) in (49) and ignoring the term that involves , we
obtain

(67)

The proof of the last equality is provided in Appendix IV for the
case (the generalization is easy).

Finally, using (58) in (50) and ignoring the term involving ,
we obtain

(68)

where at point we used the structure of the elimination and
the commutation matrices and the fact that matrices and

have positive diagonal elements.
Combining expressions (47) and (66)–(68), we obtain

(69)

Using (69), (21) and (59), we conclude with the following
bound:

(70)

Finally, recalling the definition of as , we
obtain (65) to prove Lemma 3.

B. High SNR—Channel Uncertainties Only at the Receiver

Lemma 4: In the high-SNR regime, the following approxi-
mation holds

(71)

Proof: Starting with in (56) and using (60) and (62),
we obtain

(72)

Using (64) in (57), we get

(73)

We conclude that, for sufficiently high SNR, term is negli-
gible compared with . Combining expressions (55), (72), and
(73), we obtain (71) to prove Lemma 4.
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TABLE I
ELEMENTS OF CHANNEL MATRIX �

C. High SNR—Channel Uncertainties at Both the Transmitter
and the Receiver

Proposition 2: The high-SNR MIMO-TH EMSE induced by
channel uncertainties at both the transmitter and the receiver is
upper bounded as

(74)

Proof: The proof requires only the substitution of (65) and
(71) into (42).

We observe that the EMSE is upper bounded by an expres-
sion proportional to the MMSE. The proportionality factor is
determined by the system parameters and , the channel
correlation coefficient and the conditioning of the channel
matrix through .

In the simulations section, we shall observe that this high-
SNR bound is in many cases tight because the EMSE due to the
channel inaccuracies only at the receiver dominates the EMSE
due to channel inaccuracies only at the transmitter.

D. High SNR—Averaging Over the Channels

In this subsection, we compute the average, over the channels,
of the EMSE to MMSE ratio.

Proposition 3: Taking expectation with respect to the chan-
nels in (74), we obtain the following bound for the average
EMSE to MMSE ratio, for ,

(75)

Proof: Bound (74) can be written as

(76)

If we take expectation with respect to the channel, we get

(77)

It can be shown that if the elements of are zero-mean, unit
variance i.i.d. circular complex Gaussian random variables and

, then [15]

(78)

Substituting (78) in (77), we prove (75).

We observe that the average EMSE to MMSE ratio is
upper bounded by an expression which depends on the system
parameters , , and , and the channel correlation coef-
ficient .

V. SIMULATION RESULTS

In the first part of our experiments, we illustrate Proposi-
tions 1 and 2 using a specific channel realization, by taking
averages over the channel uncertainties. More specifically, we
consider a system with transmit antennas and
receive antennas and channel matrix with elements given in
Table I.4 The noise is spatially and temporally white, circularly
symmetric complex Gaussian with variance . The input sym-
bols are i.i.d., drawn from a 4-QAM constellation. We assume
that the training block consists of 10 columns. We set the
channel correlation coefficient equal to . We define
the SNR as the ratio of the total receive power to the total noise
power

(79)

In Fig. 2, we plot the MMSE (20), the average of the MSEs for
the case of channel inaccuracies only at the transmitter (the av-
erage is over ), the average of the MSEs for the case of
channel inaccuracies only at the receiver (the average is over

), and finally the average of the MSEs for inaccuracies at
both the transmitter and the receiver. We observe that the EMSE
component due to is significantly larger than that due to

. This observation is in agreement with our theoretical
results because the high-SNR approximations (65) and (71) in-
dicate that both EMSEs are proportional to the MMSE, with
the proportionality factor in (71) being larger than the one in
(65), as long as the channel matrix is well conditioned and
the channel correlation coefficient is relatively large. An ex-
planation of this phenomenon might be the fact that in the first
case the receiver is optimized by taking into account the channel
uncertainties at the transmitter while something analogous does
not happen in the latter case.

In Fig. 3, we present the experimentally computed EMSE,
the theoretical second-order approximation as the sum of (47)
and (55), and the EMSE bound in (74). We observe that the
experimental and theoretical EMSE values practically coincide
for SNR higher than 5 dB. Also, the EMSE bound is very close
to the true EMSE for SNR higher than 15 dB.

4Analogous results have been obtained in extended simulations with other
channel realizations.
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Fig. 2. MMSE using the true channel (“��”), expectation of the MSEs for
channel inaccuracies only at transmitter (“�”), expectation of the MSEs for
channel inaccuracies only at the receiver (“�”) and expectation of the MSEs
for channel inaccuracies at both the transmitter and the receiver (“��”).

Fig. 3. Experimentally computed EMSE, theoretical second-order approxima-
tion (sum of (47) and (55)), and EMSE bound in (74).

In the second part of our experiments, we take averages over
the channel matrices by assuming that the elements of are
i.i.d. . The SNR in this case is defined as

(80)

In Fig. 4, we plot the experimentally computed EMSE and the
theoretical second-order approximation, i.e., the sum of (47) and
(55), averaged over different channel realizations, for the param-
eters defined above. We observe that the two curves coincide for
SNR higher than 7 dB, meaning that our analysis holds for this
case too, although it is difficult to give a simple expression for
the theoretical second-order approximation.

In Fig. 5, we plot the experimental average ratio EMSE/
MMSE and the simple bound in (75). We observe that the bound
in (75) is very close to the true average EMSE to MMSE ratio,
which attains a constant value for sufficiently high SNR.

Fig. 4. Experimentally computed EMSE and theoretical second-order approx-
imation (sum of (47) and (55)) averaged over different channel realizations.

Fig. 5. Experimentally computed averaged ratio EMSE/MMSE and the corre-
sponding bound in (75).

VI. CONCLUSION

We considered the sensitivity of the mismatched MIMO-TH
with respect to channel estimation errors and channel time-vari-
ations. We developed a second-order EMSE approximation
which, unfortunately, was difficult to interpret. We focused on
the high-SNR regime and derived a simple and informative
EMSE upper bound that uncovers the factors that determine the
sensitivity of the MIMO-TH precoder with respect to channel
uncertainties at both the transmitter and the receiver. Numerical
experiments were in agreement with our theoretical analysis.

APPENDIX I

Proof of Proposition 1: The aim is to compute the EMSE
assuming channel inaccuracies at both the transmitter and the
receiver. The matrix filters used in this case are given by (31)
and (34).

We have already defined and , as
and , respectively. We have also mentioned



TSIPOURIDOU AND LIAVAS: ON THE SENSITIVITY OF THE MIMO-TH PRECODER WITH RESPECT TO CHANNEL UNCERTAINTIES 2269

(and prove in Appendixes II and III) that depends only
on , while depends only on . We recall that

and are independent.
In order to compute the EMSE defined in (36), we define

and use (34) and (39). Then

(81)

We observe that depends on both and ,
through and , respectively. If we write term using
(10) and then keep only the first-order terms, we get

(82)

where matrix is defined in (54). Combining (81) and (82), we
get

(83)

Next, we return to the EMSE definition in (36). We first sub-
stitute and with and ,
respectively, in (35). Then, using the definition (36), we get

(84)

Using (83), and the fact that and are zero mean
and independent (which implies independence between and

), terms become

(85)

and

(86)

Finally, we combine (84)–(86) and use (61) and (45) to get

APPENDIX II

Proof of Lemma 1: The aim is to develop a second-order ap-
proximation to . Towards this purpose, we must de-
velop a first-order approximation to with respect to .
Using (31) and defining and ,
we obtain

Thus, a first-order approximation to , with respect to
and , is

(87)

Next, we derive first-order approximations to and ,
with respect to . We start with . We remind that

and

Using a result for the Cholesky factorization of a perturbed pos-
itive definite matrix [14], we obtain

where is the lower triangular part of matrix
, with diagonal elements equal to half the

diagonal elements of . Thus,

(88)

For term , we have

where at point we used the first-order approximation

Thus,

(89)

Finally, using (88), (89), and the definition of matrix in (18),
we get

(90)
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Up to this point, we have expressed terms and as
functions of the matrix , which, in turn, is a linear function
of . Next, we return to (45) and using (1), we write the
EMSE as

(91)

Using (87), (88), and (90), and defining
, we can express term as

(92)

where is the lower triangular part of . At point we add
and subtract the same term in order to simplify our calculations.

Next, we express and in terms of
. Using (2), (3) and (8), we can write

(93)

We continue with . Using (2), (3), (9) and defining
, we obtain

(94)

We return to (92), and using (93), (94) and (7), after some cal-
culations, we obtain

(95)

where

(96)

and

(97)

Using the circular symmetry of , (29), (27), (24) and (91),
we obtain

(98)

where we also defined the scalar , as , and used
that . Using (96) and (97) and after some calculations,
it can be shown that the second-order EMSE approximation (98)
can be expressed as

where terms are given in (48)–(50). During the calculations,
we also used that, from the definition of matrices and in
(17) and (46), respectively, we get

(99)

APPENDIX III

Proof of Lemma 2: The aim is to develop a second-order
approximation to . In order to compute the EMSE
defined in (53), we must develop a first-order approximation
to with respect to , which is defined as

. We can write from (39) as

(100)
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Using (10) and the definition of in (19), we obtain

Thus, a first-order approximation to is

(101)

and a second-order approximation of the EMSE is given by

(102)

From the definitions of in (101), in (100), and (2), we
obtain

(103)

Using (7), we get

Using the circular symmetry of and (30), we obtain

Finally, using (24) we obtain the expression

where

and

APPENDIX IV

In this Appendix, we prove the second equality in (67) for the
case (i.e., ). The aim is to simplify the trace term

of the first line of (67)

(104)

For notational simplicity, we define matrices and , as
and .

We first write the matrices inside the trace operator of (104).
For the case,

and

For the other Kronecker product, we get

Then, the product of the matrices inside the trace operator is

and is obvious that

(105)

Using an analogous procedure, it can be shown that result (105)
holds for the general case.
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APPENDIX V

In this Appendix, we simplify term in the
high-SNR regime (i.e., ). Using (16), (17), (19), and (61),
we write matrix as

Then, using (58), we get

Finally, using (21), we get
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